MEM6810 Engineering Systems Modeling and Simulation ^工程系统建模与仿^真

Theory Analysis

Lecture 10: Output Analysis III: Optimization

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

 shenhaihui.github.io/teaching/mem6810f \blacktriangleright shenhaihui@sjtu.edu.cn

Spring 2023 (full-time)

Contents

1 [Introduction](#page-2-0)

- \blacktriangleright [Definition](#page-3-0)
- \blacktriangleright [Types](#page-4-0)
- 2 [White-box OvS Problem](#page-6-0) **> [Sample Average Approximation](#page-8-0)**
- **3** Black-box CO_vS Problem
	- [Gradient Descent](#page-16-0)
	- \blacktriangleright [Stochastic Approximation](#page-18-0)
- 4 [Black-box DOvS Problem](#page-24-0) \blacktriangleright [Simulated Annealing](#page-26-0)
	-
	- \triangleright [COMPASS](#page-32-0)

1 [Introduction](#page-2-0) \blacktriangleright [Definition](#page-3-0)

- \blacktriangleright [Types](#page-4-0)
- [White-box OvS Problem](#page-6-0) ▶ [Sample Average Approximation](#page-8-0)
- 3 [Black-box COvS Problem](#page-14-0) [Gradient Descent](#page-16-0) \triangleright [Stochastic Approximation](#page-18-0)
- 4 [Black-box DOvS Problem](#page-24-0) \blacktriangleright [Simulated Annealing](#page-26-0) \triangleright [COMPASS](#page-32-0)

• Optimization via Simulation (OvS), or, simply called Simulation Optimization (SO):

$$
\min_{\mathbf{x}\in\mathcal{X}}\;g(\mathbf{x})\coloneqq\mathbb{E}[G(\mathbf{x},\xi)],
$$

where $\mathcal{X} \subset \mathbb{R}^d$ is the feasible set, and $g: \mathcal{X} \to \mathbb{R}$ is a deterministic function whose [va](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)lues can only be evaluated with noisy observations.

- Given $x, G(x, \xi)$ is a random variable (the randomness is from ξ), and the distribution of $G(x, \xi)$ is unknown.
- Given x, realizations of $G(x, \xi)$ can be observed by running simulation, or more generally, taking samples.

- • OvS Problem can be classified into two types according to whether the explicit form of $G(x, \xi)$ is available.
- White-box: The explicit form of $G(x, \xi)$ is available.
	- Example: $G(x,\xi) = sin((x \xi)^2)$, where the distribution of ξ is unknown.
- Black-box: The explicit form of $G(x, \xi)$ is not available and it is embedded in a simulation model.
	- Example: Let $G(x,\xi)$ be the waiting time of a customer in a complex queueing network, where x represents the configuration parameters.

- OvS Problem can be classified into three types according to the feasible set \mathcal{X} .
- Ranking and selection $(R \& S)$: X is a set of relatively small number of (discrete) solutions.
- Discrete OvS (DOvS): X is [a](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html) discrete set, with huge or even countably infinite number of solutions.
	- One can also view R&S problem as a special type of DOvS problem.
- Continuous OvS (COvS): X is a continuous set, hence there exits uncountably infinite number of solutions.

[Introduction](#page-2-0) \blacktriangleright [Definition](#page-3-0) \blacktriangleright [Types](#page-4-0)

2 [White-box OvS Problem](#page-6-0) **>** [Sample Average Approximation](#page-8-0)

- [Black-box COvS Problem](#page-14-0) [Gradient Descent](#page-16-0) \triangleright [Stochastic Approximation](#page-18-0)
- 4 [Black-box DOvS Problem](#page-24-0) \blacktriangleright [Simulated Annealing](#page-26-0) \triangleright [COMPASS](#page-32-0)

- For white-box OvS problems, we can use the sample average approximation.
- Of course, those algorithms d[es](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)igned for black-box OvS problems can also be applied to white-box OvS problems.

- • Suppose that we have an iid sample $\{\xi_1, \ldots, \xi_n\}$ of ξ .
- To solve $\min_{\bm{x}\in\mathcal{X}} q(\bm{x}) \coloneqq \mathbb{E}[G(\bm{x},\xi)]$, we try to solve

$$
\min_{\boldsymbol{x}\in\mathcal{X}}\widehat{g}_n(\boldsymbol{x})\coloneqq\frac{1}{n}\sum_{i=1}^nG(\boldsymbol{x},\xi_i),
$$

with any suitable deterministi[c](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html) optimization algorithm (after $\{\xi_1,\ldots,\xi_n\}$ is realized).

- This method is called Sample Average Approximation (SAA); see [Kim et al. \(2015\)](https://link.springer.com/chapter/10.1007/978-1-4939-1384-8_8) for a review.
- Clearly, for finite n , $\inf_{x \in \mathcal{X}} \widehat{g}_n(x)$ is a random variable (before $\{\xi_1,\ldots,\xi_n\}$ is realized), and it is not strictly equal to $\min_{\mathbf{x} \in \mathcal{X}} q(\mathbf{x}).$

• Indeed, one can prove that

$$
\mathbb{E}\left[\inf_{\boldsymbol{x}\in\mathcal{X}}\widehat{g}_n(\boldsymbol{x})\right]\leq \min_{\boldsymbol{x}\in\mathcal{X}}g(\boldsymbol{x}).
$$

Proof. For any $y \in \mathcal{X}$,

$$
\inf_{\boldsymbol x\in\mathcal{X}}\widehat{g}_n(\boldsymbol x)\leq \widehat{g}_n(\boldsymbol y)\Longrightarrow \mathbb{E}\left[\inf_{\boldsymbol x\in\mathcal{X}}\widehat{g}_n(\boldsymbol x)\right]\leq \mathbb{E}[\widehat{g}_n(\boldsymbol y)]=g(\boldsymbol y).
$$

Minimizing the right-hand side over all $y \in \mathcal{X}$ completes the proof.

• Moreover, it can also be shown that

$$
\mathbb{E}\left[\inf_{\bm{x}\in\mathcal{X}}\widehat{g}_n(\bm{x})\right]\leq \mathbb{E}\left[\inf_{\bm{x}\in\mathcal{X}}\widehat{g}_{n+1}(\bm{x})\right]\leq \min_{\bm{x}\in\mathcal{X}}g(\bm{x}).
$$

(Prove it as an exercise)

上海文前

- What can we say if we continuously increase sample size n ?
- It will be **reassuring** if we know that the obtained solution will be closer and closer to the true solution, as we increase sample size n .
- Formally, we are seeking for a **convergence** guarantee for SAA method.

 $\bullet\,$ For set $\mathcal{A}\subset\mathbb{R}^d$, the distance from $\bm{x}\in\mathbb{R}^d$ to \mathcal{A} is defined as

$$
\text{dist}(\boldsymbol{x}, \mathcal{A}) \coloneqq \inf_{\boldsymbol{y} \in \mathcal{A}} \|\boldsymbol{x} - \boldsymbol{y}\|,
$$

where $\|\cdot\|$ denotes the Euclidean distance.

 $\bullet\,$ For sets $\mathcal{A},\mathcal{B}\subset\mathbb{R}^d$, the deviation from \mathcal{A} to \mathcal{B} is defined as

$$
D(\mathcal{A}, \mathcal{B}) \coloneqq \sup_{\bm{x} \in \mathcal{A}} \text{dist}(\bm{x}, \mathcal{B}).
$$

• Let

$$
\mathcal{S} \coloneqq \operatornamewithlimits{argmin}_{\bm{x} \in \mathcal{X}} g(\bm{x}), \\ \widehat{\mathcal{S}}_n \coloneqq \operatornamewithlimits{argmin}_{\bm{x} \in \mathcal{X}} \ \widehat{g}_n(\bm{x}).
$$

- How fast does the SAA solution converge to the true solution?
- Formally, it's known as the rate of convergence.
- Under certain regularity conditions, one may show that

$$
\left|\min_{\boldsymbol{x}\in\mathcal{X}}\widehat{g}_n(\boldsymbol{x})-\min_{\boldsymbol{x}\in\mathcal{X}}g(\boldsymbol{x})\right|=O_p(n^{-1/2}),
$$

and given $\mathcal{S} = \{x^*\}$ is a singleton,

$$
\|\widehat{\boldsymbol{x}}_n - \boldsymbol{x}^*\| = O_p(n^{-1/2}).
$$

[Introduction](#page-2-0) \blacktriangleright [Definition](#page-3-0)

- \blacktriangleright [Types](#page-4-0)
- [White-box OvS Problem](#page-6-0) ▶ [Sample Average Approximation](#page-8-0)
- **3** [Black-box COvS Problem](#page-14-0)
	- [Gradient Descent](#page-16-0)
	- \blacktriangleright [Stochastic Approximation](#page-18-0)
- 4 [Black-box DOvS Problem](#page-24-0) \blacktriangleright [Simulated Annealing](#page-26-0) \triangleright [COMPASS](#page-32-0)

Black-box COvS Problem

- Main types of algorithms for black-box COvS problems:
	- random search; see $\boxed{\text{Andradóttir} (2015)}$ for a review;
	- stochastic approximation; see [Chau and Fu \(2015\)](https://link.springer.com/chapter/10.1007/978-1-4939-1384-8_6) for a review;
	- surrogate-based methods; see [Hong and Zhang \(2021\)](https://arxiv.org/abs/2105.03893) for a review.
- Stochastic Approximation (S[A\)](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html) was proposed by [Robbins and](https://doi.org/10.1214/aoms/1177729586) [Monro \(1951\)](https://doi.org/10.1214/aoms/1177729586) and [Kiefer and Wolfowitz \(1952\)](https://doi.org/10.1214/aoms/1177729392).
- SA can be viewed as a stochastic version of the gradient descent (or called steepest descent) algorithm, so it is also called stochastic gradient descent.

• Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable (deterministic) function:

$$
\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \gamma \nabla g(\boldsymbol{x}_k),
$$

where $\nabla q(x)$ is the gradient and $\gamma > 0$ is the step size.

• If the minimization problem is constrained, say the feasible set $\mathcal{X} \subset \mathbb{R}^d$ is convex and compact, one can easily add a projection $\Pi_{\mathcal{X}}(x)$ mapping $x \notin \mathcal{X}$ back into \mathcal{X} .

Black-box COvS Problem \rightarrow Gradient Descent

- The value of the step size γ is allowed to change at every iteration, and with proper choice, convergence to a local minimizer (say, \boldsymbol{x}^*) can be guaranteed, i.e., $\boldsymbol{x}_k \to \boldsymbol{x}^*.$
- Under certain regularity conditions, one can show that $|g(\boldsymbol{x}_k) - g(\boldsymbol{x}^*)| = O(k^{-1})$ for unconstraied problem with - ヒ 謹 ぞ 話 メ 滲 constant γ .

• SA as a stochastic version of the gradient ascent:

$$
\boldsymbol{X}_{k+1} = \Pi_{\mathcal{X}}\left(\boldsymbol{X}_k - a_k \widehat{\nabla}g(\boldsymbol{X}_k)\right),
$$

where $\Pi_{\mathcal{X}}$ is the projection, $\{a_k\}_{k\geq 1}$ is a deterministic positive sequence for step size, and $\widehat{\nabla} g(x)$ is an estimmator of the gradient $\nabla q(x)$.

- In some simulation experiments, unbiased $\widehat{\nabla} g(\boldsymbol{x})$ is available,[†] then it is the Robbins-Monro (RM) type SA [\(Robbins and](https://doi.org/10.1214/aoms/1177729586) [Monro 1951\)](https://doi.org/10.1214/aoms/1177729586).
- Otherwise, $\widehat{\nabla} g(x)$ needs to be constructed with certain indirect method (thus biased), then it is the Kiefer-Wolfowitz (KW) type SA [Kiefer and Wolfowitz \(1952\)](https://doi.org/10.1214/aoms/1177729392).

 † When we observe $G(\bm x, \bm \xi)$, we will also observe $\widehat{\nabla} g(\bm x, \bm \xi)$ at the same time such that $\mathbb{E}[\widehat{\nabla} g(\bm x, \bm \xi)]=\nabla g(\bm x).$

上海京涌大學

• Gradient descent vs SA (i.e., stochastic gradient desecent):

Gradient Descent

Stochastic Gradient Descent

• Construct $\widehat{\nabla} g(\bm{X}_k)$ via symmetric (or central) finite difference:

$$
\widehat{\nabla}g\left(\boldsymbol{X}_{k}\right) \coloneqq \left(g_1\left(\boldsymbol{X}_{k}\right),\ldots,g_d\left(\boldsymbol{X}_{k}\right)\right)^{\mathsf{T}},
$$

where

$$
g_i\left(\boldsymbol{X}_k\right) := \frac{G(\boldsymbol{X}_k + c_k \boldsymbol{e}_i) - G(\boldsymbol{X}_k - c_k \boldsymbol{e}_i)}{2c_k},
$$

 e_i denotes a $d \times 1$ vector whose *i*th element is one and other elements are all zeros, $i = 1, \ldots, d$, and $\{c_k\}_{k \geq 1}$ is a deterministic positive sequence.

• It requires $2d$ aditional simulation runs (samples) to compute $\widehat{\nabla}a(\boldsymbol{X}_k).$

• Let M denote the set of local optimal solutions:

$$
\mathcal{M} \coloneqq \left\{ \boldsymbol{x} \in \mathcal{X}: \ g(\boldsymbol{x}) \leq \min_{\boldsymbol{y} \in \mathcal{B}(\boldsymbol{x})} g(\boldsymbol{y}) \right\},
$$

where $\mathcal{B}(x) \subset \mathcal{X}$ denotes a neighborhood of $x \in \mathcal{X}$.

 \bullet Uunder certain conditions, for $x^*\in\mathcal{M}$ such that $X_k\stackrel{a.s.}{\longrightarrow}x^*,$ RM type SA can reach $O_p(k^{-1/2})$ rate of convergence, i.e.,

$$
\|\bm{X}_k-\bm{x}^*\|=O_p(k^{-1/2}),
$$

while KW type SA can reach $O_p(k^{-1/3})$ rate of convergence.

- Note that the above order is in terms of the iteration number k , rather than the number of simulation runs (sample size).
- If in terms of the sample size n , the rate of convergence of KW type SA is $O_p((n/d)^{-1/3})$, which depends on the dimensionality d .

• Simultaneous perturbation stochastic approximation (SPSA):

$$
\widehat{\nabla} g\left(\boldsymbol{X}_{k}\right) \coloneqq \left(g_1\left(\boldsymbol{X}_{k}\right), \ldots, g_d\left(\boldsymbol{X}_{k}\right)\right)^{\intercal},
$$

where

$$
g_i\left(\boldsymbol{X}_k\right) := \frac{G(\boldsymbol{X}_k + c_k \boldsymbol{B}_k) - G(\boldsymbol{X}_k - c_k \boldsymbol{B}_k)}{2c_k B_{k,i}},
$$

 $\boldsymbol{B}_k \coloneqq (B_{k,1},\ldots,B_{k,d})^{\intercal}$, and $B_{k,\,i} = 1$ or $\,-\,1$ with probability 1/2.

- It requires only 2 aditional simulation runs (samples) to compute $\widehat{\nabla} q(\boldsymbol{X}_k)$, no matter what d is.
- \bullet SPSA can reach $O_p(n^{-1/3})$ rate of convergence in terms of the sample size n . 上海交通大学

[Introduction](#page-2-0) \blacktriangleright [Definition](#page-3-0)

- \blacktriangleright [Types](#page-4-0)
- [White-box OvS Problem](#page-6-0) ▶ [Sample Average Approximation](#page-8-0)
- 3 [Black-box COvS Problem](#page-14-0) [Gradient Descent](#page-16-0) \triangleright [Stochastic Approximation](#page-18-0)
- 4 [Black-box DOvS Problem](#page-24-0) \blacktriangleright [Simulated Annealing](#page-26-0)
	- \triangleright [COMPASS](#page-32-0)

- Many black-box DOvS algorithms are based on random search; see [Hong et al. \(2015\)](https://link.springer.com/chapter/10.1007/978-1-4939-1384-8_2) for a review.
- The framework of random search:
	- Initialization: Arbitrarily choose $x_0^* \in \mathcal{X}$; set the information set (that keeps visited solutions and their corresponding observations) \mathcal{F}_0 ; set iteration index $k = 0$.
	- At Iteration k :

CC BY-SA

- Sampling: Choose the estimation set $\mathcal{E} \subset \mathcal{X}$ (that contains solutions at which simulation will be run); some or all of the solutions in $\mathcal E$ are randomly sampled from $\mathcal X$ with distribution determined by information \mathcal{F}_k .
- Evaluation: For each $x \in \mathcal{E}$, spend simulation effort according to certain rule determined by \mathcal{F}_k and \mathcal{E}_k .
- $-$ Updating: <code>Update</code> $\mathcal{F}_{k+1};$ choose some \boldsymbol{x}_{k+1}^* as the current best solution based on certain estimator; set $k \leftarrow k + 1$.

上海交通大学

- • The simulated annealing algorithm dates back to the pioneering work by [Metropolis et al. \(1953\)](http://dx.doi.org/10.1063/1.1699114).
	- It studied how in the physical annealing process, particles of a solid arrange themselves into thermal equibibrium at a given temperature.
- A large body of literature has developed the simulated annealing algorithm to solve d[e](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)terministic global optimization problems over **finite** set; important works include [Kirkpatrick](https://doi.org/10.1126/science.220.4598.671) [et al. \(1983\)](https://doi.org/10.1126/science.220.4598.671), [Mitra et al. \(1986\)](https://doi.org/10.2307/1427186), [Hajek \(1988\)](https://www.jstor.org/stable/3689827), etc.
- Later, the simulated annealing was extended to solve black-box DOvS problems over **finite** set; important works include [Bulgak and Sander \(1988\)](https://doi.org/10.1109/WSC.1988.716241), [Gelfand and Mitter \(1989\)](https://link.springer.com/article/10.1007/BF00939629), Alrefaei and Andradóttir (1999), etc.

- Let $\mathcal{B}(\bm{x}) \subset \mathcal{X}$ denote a neighborhood[†] of $\bm{x} \in \mathcal{X}$.
- $\mathcal{B}(x)$ is carefully desined such that, for any $x, y \in \mathcal{X}$, y is reachable from x .
	- That is, there exists a finite sequence $\bm{x} = \bm{x}_0, \bm{x}_1, \dots, \bm{x}_\ell = \bm{y}$ such that $x_{i+1} \in \mathcal{B}(x_i)$, $i = 0, 1, \ldots, \ell - 1$.
- Define transition probability $R(\boldsymbol{x}, \boldsymbol{y})$, where $R: \mathcal{X} \times \mathcal{X} \to [0, \infty)$ and $R(\boldsymbol{x}, \boldsymbol{y}) > 0 \Longleftrightarrow y \in \mathcal{B}(\boldsymbol{x})$.
- Let $\{t_k\}_{k\geq 1}$ be a positive sequence of numbers, which is konwn as the temperature.

 \dagger The neighborhood structer can be quite different in discrete optimization compared to continuous optimization!

武川 ヒ 海 ネ ネ 大 浮

Black-box DOvS Problem Simulated Annealing

- Simulated annealing algorithm for deterministic optimization:
	- Initialization: Arbitrarily choose $X_0 \in \mathcal{X}$; set iteration index $k=0.$
	- At Iteration k :
		- Sampling: Sample a candidate solution $Y_{k+1} \in \mathcal{B}(X_k)$ according to distribution $R(\mathbf{X}_k, \cdot)$, i.e.,

$$
\mathbb{P}(\mathbf{Y}_{k+1}=\boldsymbol{y}|\boldsymbol{X}_k=\boldsymbol{x})=R(\boldsymbol{x},\boldsymbol{y}).
$$

- Evaluation: No need in the deterministic optimization.
- Updating: Let

$$
\boldsymbol{X}_{k+1} \coloneqq \binom{\boldsymbol{Y}_{k+1}, \hspace{2mm} \text{with probability } \exp\Bigl\{\frac{-[g(\boldsymbol{Y}_{k+1})-g(\boldsymbol{X}_{k})]^+}{t_{k+1}}\Bigr\}, \\ \boldsymbol{X}_{k}, \hspace{2mm} \text{otherwise};
$$

$$
\mathsf{set}\; k \leftarrow k+1.
$$

• To ensuer the simulated annealing algorithm for deterministic optimization is globally convergent, i.e.,

$$
\text{dist}(\boldsymbol{X}_k, \mathcal{S}) \xrightarrow{a.s} 0, \text{ as } k \to \infty ,
$$

[Hajek \(1988, Theorem 1\)](https://www.jstor.org/stable/3689827) gives a sufficient condition.

 \bullet $R(x, y)$ satisfies weak reversibility; a sufficient example is that

$$
R(\boldsymbol{x},\boldsymbol{y})\coloneqq \begin{cases} \frac{1}{|\mathcal{B}(\boldsymbol{x})|}, & \text{if} \,\, \boldsymbol{y}\in\mathcal{B}(\boldsymbol{x}), \\ 0, & \text{otherwise}, \end{cases}
$$

with symmetric neighborhood, i.e., $y \in \mathcal{B}(x) \Longleftrightarrow x \in \mathcal{B}(y)$. ● $\{t_k\}_{k>1}$ takes the form

$$
t_k = \frac{c}{\ln(k+1)},
$$

where c is sufficiently large.[†]

 $^\dagger c \geq d^*$, where d^* is the maximum depth $[$ Hajek $(1988, p313)]$ of the local but not global optimal solutions.

上海空首大學

- Simulated annealing algorithm for black-box DOvS [\(Gelfand](https://link.springer.com/article/10.1007/BF00939629) [and Mitter 1989\)](https://link.springer.com/article/10.1007/BF00939629):
	- Initialization: Arbitrarily choose $X_0 \in \mathcal{X}$; set iteration index $k=0.$
	- At Iteration k :
		- Sampling: Sample a candidate solution $Y_{k+1} \in \mathcal{B}(X_k)$ according to distribution $R(\boldsymbol{X}_k, \cdot)$, i.e.,

$$
\mathbb{P}(\boldsymbol{Y}_{k+1}=\boldsymbol{y}|\boldsymbol{X}_k=\boldsymbol{x})=R(\boldsymbol{x},\boldsymbol{y}).
$$

- Evaluation: Let $\hat{g}(Y_{k+1}) := \frac{1}{n_{k+1}} \sum_{i=1}^{n_{k+1}} G(Y_{k+1}, \xi_i)$, $\widehat{g}(\bm{X}_k) \coloneqq \frac{1}{n_{k+1}} \sum_{i=1}^{n_{k+1}} G(\bm{X}_k, \xi'_i).$
- Updating: Let

$$
\boldsymbol{X}_{k+1} \coloneqq \binom{\boldsymbol{Y}_{k+1}, \hspace{2mm} \text{with probability } \exp\Bigl\{\frac{-[\widehat{g}(\boldsymbol{Y}_{k+1})-\widehat{g}(\boldsymbol{X}_{k})]^+}{t_{k+1}}\Bigr\},
$$

set $k \leftarrow k + 1$.

い ヒ みえる 大学

• [Gelfand and Mitter \(1989\)](https://link.springer.com/article/10.1007/BF00939629) show that if

$$
\widehat{g}(\mathbf{Y}_{k+1})|\mathbf{Y}_{k+1}=\mathbf{y}\sim\mathcal{N}(g(\mathbf{y}),\sigma_{k+1}^2),
$$

such that $\sigma_k = o(t_k)$, then the simulated annealing algorithm used for DOvS has the same global convergence as its counterpart used for deterministic optimization.

- A sufficient condition is that:
	- $\bullet \ \ G(\boldsymbol{x},\xi) \sim \mathcal{N}(g(\boldsymbol{x}),\sigma^2(\boldsymbol{x}))$ [w](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)ith $\sigma^2(\boldsymbol{x}) \leq \sigma^2 < \infty$ for all $x \in \mathcal{X}$.
	- $\{n_k\}_{k\geq 1}$ satisfies $\lim_{k\to\infty}\frac{1}{t_k\sqrt{n_k}}=0$, i.e., $n_k\coloneqq t_k^{-\alpha}$ with $\alpha > 2$.
- Alrefaei and Andradóttir (1999) propose a modified simulated annealing algorithm for DOvS, which is also globally convergent:
	- temperature t_k is constant;
	- the current best solution is chosed in a different way. I Find \mathbb{Z}/\mathbb{Z}
- • Convergent Optimization via Most-Promising-Area Stochastic Search (COMPASS) is a locally convergent algorithm for black-box algorithm proposed by [Hong and Nelson \(2006\)](https://doi.org/10.1287/opre.1050.0237).
- It can be used when the discr[et](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)e feasible set is finite (i.e., fully constrained) or infinite (i.e., partially constrained or unconstrained).

- COMPASS for DOvS [Hong and Nelson \(2006\)](https://doi.org/10.1287/opre.1050.0237):
	- Initialization: Arbitrarily choose $x_0 \in \mathcal{X}$; set $x_0^* = x_0$ and $V_0 = \{x_0\}$; take observations according to a simulation allocation rule (SAR) from x_0 ; let $\mathcal{P}_0 = \mathcal{X}$; set iteration index $k=0$.
	- At Iteration k :
		- Sampling: Sample m so[lu](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)tions uniformly and independently from \mathcal{P}_k , denoted as $\{x_{k1}, \ldots, x_{km}\}$; let $\mathcal{V}_{k+1} \coloneqq \mathcal{V}_k \cup \{x_{k1}, \ldots, x_{km}\}\$ be the estimation set.
		- Evaluation: For each $x \in V_{k+1}$, take additional observations according to the SAR.
		- Updating: Update \mathcal{P}_{k+1} ; choose the solution in \mathcal{V}_{k+1} with smallest estimated funtion value as \boldsymbol{x}_{k+1}^* ; set $k \leftarrow k+1.$

Black-box DOvS Problem \longrightarrow COMPASS

 $\bullet\,$ The way to construct \mathcal{P}_k — the most promising area:

[Introduction](#page-2-0) \blacktriangleright [Definition](#page-3-0)

- \blacktriangleright [Types](#page-4-0)
- [White-box OvS Problem](#page-6-0) ▶ [Sample Average Approximation](#page-8-0)
- 3 [Black-box COvS Problem](#page-14-0) [Gradient Descent](#page-16-0)
	- \triangleright [Stochastic Approximation](#page-18-0)
- 4 [Black-box DOvS Problem](#page-24-0) \blacktriangleright [Simulated Annealing](#page-26-0) \triangleright [COMPASS](#page-32-0)

Usage in Softwares

- In many commercial simulation softwares, like Arena, AnyLogic, Simio and FlexSim, OptQuest is integrated for simulation optimization.
- OptQuest is based on a combination of methods, including linear/integer programming, heuristics and metaheuristics.
	- It is robust when used to so[lv](https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html)e practical OvS problems;
	- but it has no provable convergence for OvS problems.
- None of those OvS algirhtms have been integrated into the commercial simulation softwares yet.
- So, for reaseachers in the field of OvS, there is still a long way to go...

